절연용 (고무)보호구의 선정, 사용 및 관리 등에 관한 기술지침

2022. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 안전보건공단 시스템안전부 정경록 과장
- 제·개정 경과
- 2022년 12월 전기안전분야 제정위원회 심의(제정)
- 관련규격 및 자료
- 산업안전보건기준에 관한 규칙
- 안전인증·자율안전확인신고의 절차에 관한 고시
- 보호구 안전인증 고시
- KS C IEC 60903 (활선작업-전기 절연 장갑)
- KS C IEC 60984 (활선작업-전기 절연 소매)
- ASTM F496 Standard Specification for In-service Care of Insulating Gloves and Sleeves
- ASTM F1236 Standard Guide for Visual Inspection of Electrical Protective Rubber Products
- 관련법규·규칙·고시 등
- 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지)
- 관련법규·규칙·고시 등
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
- 동 설명서 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자: 2022년 12월 31일

제 정 자 : 한국산업안전보건공단 이사장

절연용 (고무)보호구의 선정, 사용 및 관리 등에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다.) 제2편 제3 장(전기로 인한 위험방지)의 제3절(전기작업에 대한 위험 방지)에 따라, 전기작업 시에 사용하는 절연용 (고무)보호구의 선정, 사용 및 설치 등에 관련된 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 사업장에서 전기작업 시 사용하는 절연용 (고무)보호구에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "절연용 보호구"라 함은 노출된 충전부, 충전전로를 취급하는 작업 또는 그 인접한 곳에서 작업하는 경우, 감전으로부터 작업자를 보호하는 용도로 사용하는 절연용 장갑, 소매, 안전화 등과 같은 개인장비를 말한다.
 - (나) "전기 절연 장갑(Electrical insulating glove)"라 함은 감전으로부터 작업자를 보호하는 용도로 사용할 수 있는 것으로서 탄성중합체(Elastomer)로 만들어진 장갑을 말한다.
 - (다) "전기 절연 소매(Electrical insulating sleeve)"라 함은 상완(팔꿈치부터 어깨까지)을 전기 충격으로부터 보호하기 위해 전기 절연 장갑과 함께 사용되는 탄성 중합체로 만들어진 소매를 말한다.

- (라) "탄성중합체(Elastomer)"라 함은 약한 응력과 응력 방출에 의한 실질적인 변형 이후. 최초의 치수와 모양으로 급격히 되돌아오는 고분자 물질을 말한다.
- (마) "보증 시험 전압(Proof test voltage)"라 함은 절연의 전기 강도가 규정값 이상이라는 것을 확인하기 위해 규정된 조건 하에서 규정된 시간 동안 장갑에 가해지는 특정 전압을 말한다.
- (바) "내전압 시험 전압(Withstand test voltage)"라 함은 규정된 조건 하에서 전압을 인가할 때 장갑이 파열 방전 없이 견디는 전압을 말한다.
- (사) "최대 사용 전압(교류)"이란 보호계통(=시스템)의 실효값(rms) 전압 정격으로서 계통(=시스템)이 활성 상태일 때 안전하게 작업할 수 있는 최대 공칭 전압을 말한다. ※ 공칭전압: (다상 회로) 상-상 간 전압, (단상 회로) 상-대지 간 전압
- (아) "최대 사용 전압(직류)"이란 안전하게 작업할 수 있는 활선 계통(=시스템)의 최 대 공칭 전압을 규정하는 보호 장비의 직류 전압 정격을 말한다.
- (자) "시스템 공칭 전압(Norminal voltage of a system)"이란 설계 또는 규정된 계통(=시스템)에 적용되는 적정한 값의 전압 또는 계통(=시스템)을 지정하거나 구분하는데 사용되는 전압의 개략적인 값을 말한다.
- (차) "유해한 물리적 결함 또는 불규칙성"이란 균일하고 매끄러운 표면 윤곽을 저해하는 어떤 특징을 말한다. 예를 들면 핀홀, 균열, 기포, 절단, 전도성 함입 이물질, 주름, 집힌 자국, 공극, 눈에 띄는 물결 및 눈에 띄는 주형 자국 등이다.
- (카) "무해한 물리적 결함 또는 불규칙성"이란 제조 공정에서 내재된 어려움과 주형 결함으로 인해 내부 및 외부의 표면에 생기는 결함 또는 불규칙성을 말한다. 이 러한 결함은 물질의 돌출부, 압입 자국, 돌기, 함입된 이물질 또는 색상 번짐 등 으로 나타날 수 있다.
- (타) "오존무늬(Ozone checking)"라 함은 기계적 응력이 가해지고 있는 물질에 오 존으로 생성된 균열(Crack)을 말한다.
- (파) "오존(Ozone)"이라 함은 매우 활동적인 산소의 형상으로 코로나와 아크 또는 자외선에 의해 만들어진 것을 말한다.

(2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 일반 사항

사업주는 근로자가 충전전로를 취급하거나 그 인근에서 작업하는 경우 근로자에게 그 작업에 적합한 절연용 보호구를 착용시켜야 한다.

4.1 보호구의 분류 및 선정

절연용 보호구는 최대사용전압에 따라 <표1>과 같이 6개 등급(장갑 6등급, 소매 5등급)으로 구분하며, 최대 사용 전압에 맞는 등급의 보호구를 선정해야 한다.

<표 1> 절연용 보호구의 등급에 따른 최대사용전압 및 고무 최대두께

등급	최대 사용	· 전압	고무 최대 두께(mm) ^{주2)}		비 고 ^{주3)}	
	교류(V, 실효값)	직류(V)	장갑	소매		
00 주1)	500	750	0.5	-	갈 색	
0	1,000	1,500	1.0	1.0	빨강색	
1	7,500	11,250	1.5	1.5	흰 색	
2	17,000	25,500	2.3	2.5	노랑색	
3	26,500	39,750	2.9	2.9	녹 색	
4	36,000	54,000	3.6	3.6	등 색	

주 1:00등급은 절연장갑만 해당

주 2 : (절연장갑 / 절연소매) 최소 두께는 내전압 시험에 합격할 수 있느냐에 의해서 정해 지며, 유연성 확보를 위해 장갑 또는 소매 평면 부분의 최대두께 지정

주 3 : (절연장갑만 해당) 「보호구 안전인증 고시」에 따른 등급별 색상 기준 (KS C IEC 60903 등급별 색상과 일부 상이함)

4.2 보호구의 내성 및 특수 성능에 따른 구분

보호구의 내성에 따라 <표2>와 같이 분류하며, 내성 성능에 따른 분류는 접미사로 추가한다.

<표 2> 절연용 보호구 특수 성능

분류	내 성	절연장갑	절연소매
А	산	0	0
Н	기름	0	0
Z	오존	0	0
R ^{₹1)}	산성, 오일, 오존	0	-
S ⁷⁻²⁾	기름 및 오존	_	0
С	초저온	0	0
F ⁷³⁾	누설 전류	0	-

주 1 : 분류 R은 내성 A, H 및 Z 특성의 조합임

주 2 : 분류 S는 내성 H와 Z의 조합임

주 3 : 분류 F는 긴 장갑 전용임

4.3 보호구의 표시

보호구는 보기 쉬운 측면 등에 압인 또는 기타 지워지지 않는 방법으로 다음 사항을 표시하여야 한다.

<표 3> 절연용 보호구 표시 내용

절연장갑	절연소매
기호(이중 삼각형)	기호 (이중 삼각형)
관련 표준 번호(KS C IEC 60903)	관련 표준 번호 (KS C IEC 60984)
제조사의 이름, 상표 또는 ID	제조사 상호, 상표 또는 식별
범주(=분류)	치수 (소(S), 중(M), 대(LG), 특대(XLG))
크기	등급 (0등급 ~ 4등급)
등급 (00등급 ~ 4등급)	"오른쪽" 또는 "왼쪽"
제조연월	제조연월

4.4 보호구의 포장

- (1) 각 쌍의 장갑은 제조사 지침에 따라 운반, 취급 및 보관 시 장갑이 손상되지 않도록 적절하게 보호할 수 있는 충분한 강도를 지닌 개별 용기나 포장물에 담아 포장하여야 한다.
- (2) 용기나 포장물 외부에는 제조사나 공급자 이름, 등급문류, 범주, 크기, 길이 및 소매 끝단의 형태를 규정한 표시가 있어야 한다.
- (3) 운송에 적합한 포장 유형은 제조사가 규정하여야 한다.

4.5 육안점검방법

4.5.1 말기

- (1) 양손사이에 장갑과 슬리브의 내·외부 표면을 굴리는 방법으로 장갑과 슬리브 표면을 점검한다. 장갑과 슬리브의 점검 방법은 다음과 같다.
 - (a) 장갑이나 슬리브의 내부 표면을 살짝 꼬집는 방법으로 바깥표면이 굽어지면서 장갑이나 슬리브의 내부 표면의 갈라진 틈이나 잘림 또는 다른 결함 부분을 점검한다.
 - (b) 모든 바깥 부분의 점검이 다 끝났으면 장갑 또는 슬리브의 안쪽을 뒤집은 다음 상기의 방법으로 안쪽을 점검한다.
 - (c) 의심되는 부분은 고무를 손가락으로 잡고 부드럽게 꼬집어보거나 굴려보는 방법으로 세밀한 조사를 실시한다.
- (2) 장갑이나 슬리브는 안쪽이 뒤집혀 놓은 상태로 계속두면 안 된다.
- (3) 엄지와 손가락사이를 벌려 당기면서 인접한 엄지와 손가락 사이의 갈라진 홈 부분에 대하여 이상 여부를 점검한다.

<그림 1> 절연용 장갑 및 슬리브 말기

4.5.2 부풀리기

- (1) 고무절연 장갑에서 천공이나 조그만 구멍들은 압력 공기로 장갑을 부풀게 하여 점검 한다. 부풀리기 점검 방법은 다음과 같다.
 - (a) 양손으로 장갑 입구의 모서리를 잡고, 입구를 밀봉하기 위하여 장갑을 나란히 잡아당긴다.
 - (b) 장갑의 목 부분을 장갑의 바닥 쪽으로 말아주고, 말려진 장갑 입구의 끝부분을 회전시켜 장갑을 꼰다.
 - (c) 장갑바닥과 손가락에 갇혀 있는 공기를 유지하기 위해 말려진 끝 부분을 한 손으로 잡는다.
 - (라) 부풀어 오른 장갑을 귀에 가까이 대고, 한 손으로 장갑바닥을 눌러 공기압을 상승시키면서 구멍에서 새는 소리를 듣는다.
 - (마) 점검이 끝나면 장갑에 갇혀있는 공기를 배출시킨다.

- (2) 무거운 장갑을 점검하는 방법은 다음과 같다.
 - (a) 장갑에 공기를 넣기 위해 평평한 표면 위에 장갑바닥 면이 올라오도록 장갑을 놓는다.
 - (b) 손가락으로 장갑 입구를 누르면서 접어 밀봉한다.
 - (c) 입구 끝부분을 봉한 상태에서 장갑 목 부분을 단단히 말아준다.
 - (d) 말린 입구 끝부분을 잡고, 45.2항 (1)호의 점검 방법에 따라 미세한 구멍이 있는지 점검한다.
- (3) 제품의 표면 점검을 위해 기계 장치인 장갑이나 슬리브 팽창기를 사용할 수 있다.
- (4) 장갑과 슬리브의 물리적 특성상 너무 부풀릴 경우 불량의 소지가 될 수 있으므로 과하게 부풀리지 않도록 주의한다. 장갑과 슬리브는 제품 정상 크기의 1.25배 ~ 2배 이상 늘리거나 부풀려서는 안 된다.

<그림 2> 절연용 장갑 및 슬리브 부풀리기 및 팽창

5. 절연 장갑

5.1 제작 및 마감

- (1) 장갑의 내부 및 외부 표면에서는 유해한 물리적 불규칙성이 없어야 한다.
- (2) 다음과 같은 경우의 무해한 물리적 불규칙성은 수용 가능하다.
 - (a) 압입 자국, 돌기 또는 주형 자국이 재료의 신축 시 매끄러운 경로로 혼합되는 경향이 있다.
 - (b) 장갑을 감쌈 물질과 함께 접어서 늘릴 때 이물질이 위치에 남아 있다.
 - (c) 색상 번짐이 작업 부위 내부 표면에서 어떠한 방향으로도 1mm 이하이다.
- (3) 그립을 향상시키도록 설계된 장갑 바닥과 손가락 바닥은 불규칙하다고 간주하지 않는다.

- (4) 장갑은 모든 형식시험을 합격하여야 한다.
- 5.2 구조, 재료 및 성능
- 5.2.1 구조 및 재료
 - (1) 장갑은 탄성중합체로 만들어진다.
 - (2) 장갑의 표준 길이는 <표 4> 와 같이 한다.

			최대 두께(mm)				
등급		1	장갑	합성장갑			
00	280	360	_	_	800	0.5	1.8
0	280	360	410	460	800	1.0	2.3
1	-	360	410	460	800	1.5	2.8
2	-	360	410	460	800	2.3	3.3
3	_	360	410	460	800	2.9	3.6
4	_	_	410	460	800	3.6	4.2

<표 4> 절연용 장갑 표준길이 및 최대 두께

- (3) 장갑의 최소 두께는 내전압 시험을 합격할 수 있느냐에 의해서만 정해져야 한다.
- (4) 적합한 유연성을 얻을 수 있도록 장갑의 평평한 표면의 최대 두께는 <표 4>과 같아야 한다.

5.2.2 성능

절연용 장갑은 "보호구 안전인증 고시(고용노동부 고시)" 및 "활선작업-전기 절연 장갑(KS C IEC 60903)"에 적합하여야 한다.

5.3 절연용 장갑의 보관

5.3.1 보관

장갑은 제조사의 지침에 따라 보관하되 압축하거나, 접거나 혹은 스팀 파이프, 라디

에이터 등의 인공적인 열원 근처에서 보관하거나 직사 광선, 인공광 등의 오존원에 노출시키지 않도록 주의를 기울인다. 10℃ ~ 35℃ 주변의 온도가 바람직하다.

5.3.2 사용 온도

- (1) 표준 장갑은 주위 온도 -25 ℃에서 +55 ℃ 인 조건에서 사용한다.
- (2) <표 2>에서, 분류 C 장갑은 -40 ℃에서 +55 ℃ 조건에서 사용한다.

5.4 점검 및 주의 사항

절연용 장갑의 사용 전 점검 및 사용 시 주의 사항은 다음과 같다.

5.4.1 사용 전 점검

- (1) 사용 전 한 쌍의 장갑을 육안 검사하고 <그림 2>와 같은 방법으로 공기 시험을 한다. 장갑 한 개가 불안전하다고 판단되면 그 쌍을 사용하지 않는다.
- (2) 육안 검사 시, 손상으로는 핀홀, 관통, 균열, 절단, 화학물 흔적, 이물질 함입, 딱딱한 지점 등이 있으며, 이러한 손상 발견 시에는 사용해서는 아니 되며 검사 및 전기 보증시험(Proof Test)를 위한 시설로 보내야 한다.

5.4.2 사용 시 주의 사항

- (1) 장갑을 열이나 빛에 불필요하게 노출시키거나 그 완전성에 영향 미칠 수 있는 어떤 물질(오일, 그리스, 강산, 화합물 용제 등)과도 접촉해서는 안 된다.
- (2) 장갑 위에 가죽 보호 장갑을 착용하는 경우, 그 보호 장갑은 자연적인 형상으로 인해 내부 장갑이 변형되지 않도록 하는 크기와 형상을 지녀야 한다.
- (3) 장갑 위에 가죽 보호 장갑을 착용하는 경우, 가죽 보호 장갑은 내부 절연 장갑보다 짧아야 하며, 가죽 보호 장갑의 소매 끝단과 내부 장갑의 소매 끝단 상부 간의 최소 거리는 <표 5>에서 권고한 것 또는 작동 전압에 따라 권고되는 것 이상이어야 한다.

<ㅠ 5> 모ㅇ 장갑의 주매 끝난과 장갑의 주매 끝난 장무와의	근단과 장갑의 소매 끝단 상부와의 거리	장간	끝다과	수매	장간의	보호	< ₹ 5>	
------------------------------------	-----------------------	----	-----	----	-----	----	--------	--

등급	최소거리 (mm)	최소거리 (inch)
00, 0	13	1/2
1	25	1
2	51	2
3	76	3
4	102	4

- (4) 다른 목적으로 사용했던 보호 장갑을 장갑 보호 용도로 사용해서는 안 된다.
- (5) 보호 장갑에 구멍, 찢어짐 또는 기계적 보호 능력에 영향을 미치는 기타 결함이 있는 경우, 그 장갑을 사용해서는 안 된다. 또한 보호 장갑에 손상을 일으킬 수 있는 오염물이 없도록 주의를 기울인다.
- (6) 보호 장갑 내부면에 예리하거나 뾰족한 물체가 있는지 검사한다.
- (7) 오일, 그리스 또는 기타 유해한 물질과 접촉한 장갑은 작업 완료 후 신속하게 세척한다.
- (8) 사용 중에 젖거나 세척으로 인해 젖은 장갑은 장갑 온도가 65℃를 초과하지 않도록 주의하면서 완벽하게 건조시켜야 한다.

5.4.3 정기검사 및 전기 재시험

- (1) 시험은 전문 시험 기관에서 실시하여야 하며, 공식적으로 교육 받고 자격을 갖춘 자만이 정기 검사와 전기를 이용한 재시험을 수행할 수 있다.
- (2) 최근 12개월 이내에 재시험을 거치지 않은 장갑을 사용하도록 출고해서는 안되며, 사용을 위해 출고한 이후 최대 6개월 이내에 시험을 거치지 않은 장갑을 사용해 서는 안 된다.
- (3) 시험은 공기 누출이 있는지 점검하기 위한 공기 팽창, 가압하는 동안 육안 검사, <표 6> 규정된 기준에 따른 절연시험을 실시하여야 한다.

<표 6> 절연용 장갑의 시험 전압 및 전류

	보증 시험	최대 보증 시험 전류 (mA 실효값)					내전압	
등급	전압		장갑 길이					
	(kV 실효값)	280	360	410	460	800	시험 전압 (kV 실효값)	
00	2.5	12	14	_	_	18	5	
0	5	12	14	16	18	20	10	
1	10	_	16	18	20	22	20	
2	20	_	18	20	22	24	30	
3	30	_	20	22	24	26	40	
4	40	_	_	24	26	30	50	

6. 절연 소매

6.1 제작 및 마감

- (1) 소매에는 유해한 물리적 결함이 내부 및 외부 표면에 있어서는 안 된다.
- (2) 다음과 같은 경우의 무해한 물리적 결함은 수용 가능하다.
 - (a) 눌린 자국이 지름 1.6mm 이하의 둥근 모서리를 가지고 표면 상에 눈으로 확인되는 파손이 없으며 엄지로 눌러 폈을 때 반대편에서 보이지 않는 경우
 - (b) (a)의 눌린 자국이 5개 이하이고 눌린 자국 간의 거리가 최소 15mm 이상 떨어진 경우
 - (c) 눌린 자국, 융기 또는 성형 자국이 재료를 늘렸을 때 완만한 경사로 혼합되는 경우
 - (d) 손가락으로 쉽게 제거할 수 없는 소량의 초과 사용된 재료에 의하여 발생하는 작은 돌출부 및 융기 같은 결함이 재료의 신장 성능에 현저한 영향을 미치지 않는 경우

6.2 구조 및 성능

6.2.1 구조 및 재료

- (1) 소매는 탄성중합체로 제조되고 이음이 없도록 매끄럽게 가공하여야 한다.
- (2) 끈 또는 벨트 부착용 소매 구멍은 비금속 보강을 하여야 한다.
- (3) 구멍은 소매 벨트의 고정 장치로 적합해야 하고 지름은 8mm로 하여야 한다.

6.2.2 성능

절연용 소매는 "활선작업-전기 절연 소매(KS C IEC 60984)"에 적합하여야 한다.

6.3 절연용 소매의 보관

6.3.1 보관

- (1) 소매는 제조사의 지침에 따라 보관하되 스팀배관, 라디에이터 또는 다른 인공 열원으로부터 멀리 떨어진 컨테이너 또는 상자에 보관되어야 한다. (주위 온도 10℃ ~ 35℃ 권장)
- (2) 소매가 눌려지거나 접히지 않도록 주의해야 한다.
- (3) 소매는 직사광선, 인공 조명 또는 다른 오존원에 노출되어서는 안 된다.

6.3.2 사용온도

- (1) 표준 소매는 주변 온도 -25℃ ~ 55℃ 조건에서 사용되어야 한다.
- (2) <표 2>에서, 분류 C 장갑은 -40 ℃에서 +55 ℃ 조건에서 사용한다.

6.4 점검 및 주의 사항

절연용 소매의 사용 전 점검 및 사용 시 주의 사항은 다음과 같다.

6.4.1 사용 전 점검

(1) 각각의 소매는 사용하기 전 내·외부 확인을 위해 뒤집어 놓아야 한다.

- (2) 사용 전 소매 한 쌍 중 한 개가 불안전하다고 판단되면 그 쌍을 사용하지 않는다.
- (3) 손상으로는 핀홀, 관통, 균열, 절단, 화학물 흔적, 이물질 함입, 딱딱한 지점 등이 있다.

6.4.2 사용 시 주의사항

- (1) 소매는 열이나 빛에 불필요하게 노출시키거나 그 완전성에 영향 미칠 수 있는 어떤 물질(오일, 그리스, 강산, 화합물 용제 등)과도 접촉해서는 안 된다.
- (2) 오일, 그리스 또는 기타 유해한 물질과 접촉한 소매는 작업 완료 후 신속하게 세척하다.
- (3) 사용 중에 젖거나 세척으로 인해 젖은 소매는 소매의 온도가 65℃를 초과하지 않도록 주의하면서 완벽하게 건조시켜야 한다.

6.4.3 정기검사 및 전기 재시험

- (1) 시험은 전문 시험 기관에서 실시하여야 하며, 공식적으로 교육 받고 자격을 갖춘 자만이 정기 검사와 전기를 이용한 재시험을 수행할 수 있다.
- (2) 최근 20개월 이내에 재시험을 거치지 않은 소매는 사용할 수 없으며, 공급 후 최대 20개월 이내에 시험을 거치지 않는 소매는 사용할 수 없다.
- (3) 시험은 공기 누출이 있는지 점검하기 위한 공기 팽창, 가압하는 동안 육안 검사, <표 7> 규정된 기준에 따른 절연시험을 실시하여야 한다.

<표 7> 절연용 소매의 시험 전압

등급	최대 교류 사용 전압 (kV 실효값)	시험 전압 (kV 실효값)	최대 직류 사용 전압 (kV, 직류)	시험 전압 (kV, 직류)
0	1	5	1.5	20
1	7.5	10	11.25	40
2	17	20	25.5	50
3	26.5	30	39.75	60
4	36	40	54	70